- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Comai, Luca (2)
-
Nganga, Mwaura Livingstone (2)
-
Stewart, Victoria (2)
-
Amundson, Kirk R. (1)
-
Henry, Isabelle M (1)
-
Henry, Isabelle M. (1)
-
Lieberman, Meric C. (1)
-
Lipka, ed., A. (1)
-
Plaimas, Kitiporn (1)
-
Sonsungsan, Pajaree (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We eat or interact with crops every day for food (tomatoes, lettuce, apples, rice, etc.), for feeding animals (hay, corn), or for a wide variety of other uses (wood, cotton). All crops come from wild plants that do not look anything like the ones we buy at the store. That is because they have been selected to look and behave in very specific ways that fit the needs of farmers, sellers, and us—the consumers. The process of developing new varieties is called breeding. Plant breeding is a complicated and lengthy process. Why do we need to breed plants? Because climate and environmental conditions are changing quickly and breeding new varieties that can survive in these new conditions or meet new needs is even more critical than before. In this article, we explain why breeding takes so long, and we discuss recent scientific findings that might help speed up the process.more » « less
-
Sonsungsan, Pajaree; Nganga, Mwaura Livingstone; Lieberman, Meric C.; Amundson, Kirk R.; Stewart, Victoria; Plaimas, Kitiporn; Comai, Luca; Henry, Isabelle M.; Lipka, ed., A. (, G3: Genes, Genomes, Genetics)Abstract High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome. Instead, high-throughput short-read sequencing can be combined with BSA of k-mers (BSA-k-mer) to map traits that appear refractory to standard approaches. This method can be applied to any organism and is particularly useful for species with genomes diverged from the closest sequenced genome. It is also instrumental when dealing with highly heterozygous and potentially polyploid genomes without phased haplotype assemblies and for which a single haplotype can control a trait. Finally, it is flexible in terms of population structure. Here, we apply the BSA-k-mer method for the rapid identification of candidate regions related to seed spot and seed size in diploid potato. Using a mixture of F1 and F2 individuals from a cross between 2 highly heterozygous parents, candidate sequences were identified for each trait using the BSA-k-mer approach. Using parental reads, we were able to determine the parental origin of the loci. Finally, we mapped the identified k-mers to a closely related potato genome to validate the method and determine the genomic loci underlying these sequences. The location identified for the seed spot matches with previously identified loci associated with pigmentation in potato. The loci associated with seed size are novel. Both loci are relevant in future breeding toward true seeds in potato.more » « less
An official website of the United States government
